Fraunhofer ISE Puts Novel TPedge Modules To The Test

The Germany-based Fraunhofer Institute for Solar Energy Systems (ISE) says it has successfully tested the reliability of TPedge PV modules, novel solar technology the institute developed with project partners.

According to Fraunhofer ISE, the TPedge concept reduces the material and production costs of PV modules, as encapsulation foils and the lamination process are no longer needed. At the same time, the aging stability of the PV module increases appreciably. In the TPedge project, researchers at Fraunhofer ISE and their partners at Bystronic glass have developed processes so that the PV modules can be manufactured on an industrial scale.

TPedge modules are edge-sealed, double-glass PV modules, similar in construction to insulating glass windows. The solar cells are fixed in the gas-filled space between the two glass panes with special adhesive pins. The TPedge module forgoes the conventional encapsulation foils, as well as the traditional module frame.

“We have successfully transferred the lab prototype to an industrial-scale module (with 60 solar cells),” says a pleased Max Mittag, project head at Fraunhofer ISE.

At the PV Module-TEC (Module Technology Center) at Fraunhofer ISE, the researchers put automated production systems into operation with which they were able to produce numerous prototypes of TPedge PV modules with different setups. As a next step, the industrial production processes were developed further and optimized. By substituting the 3-mm-thick glass with glass that is only 2-mm thick, the weight of the TPedge modules could be reduced by 30%. The module prototypes jointly produced with Bystronic glass underwent many tests based on the standards IEC 61730 and 61215, and Fraunhofer ISE says the results confirmed the high reliability and technical maturity of the TPedge module concept. Many different design setups were tested, using the conventional glass-foil-laminate and glass-glass-laminate modules as a reference.

In the humidity-heat test, various TPedge modules containing different types of commercial solar cells were subjected to a relative humidity of 85% at a temperature of 85°C for over 4,000 hours. After the test, the module power showed no change compared to the initial values measured before exposure. Fraunhofer ISE says conventional module concepts, however, with glass-foil-laminate and glass-glass-laminate demonstrated, in part, large degradation effects after undergoing the same test. The TPedge modules also successfully passed the thermal cycle durability test. Fraunhofer ISE’s TestLab PV Modules verified the durability of the TPedge modules by exposing them to 400 temperature cycles (-40 °C to + 85 °C) in the testing process.

Using commercially available mounting systems, durability tests for mechanical loads and hail were carried out at Fraunhofer ISE. The tested modules successfully passed the tests in which pressure loads up to 5400 Pa were applied to the modules in different mounting configurations. Although the tests were repeatedly carried out, no changes in the module power were detected. The TPedge concept was also tested for its resistance to hail. Even the modules with the thinner 2-mm-thick glass passed the tests successfully. In the procedure, large hail stones of 25 mm diameter were also aimed at especially critical parts of the module – for example, the glass edges. The modules passed the hail tests without being damaged and could be used further in the following tests.

Fraunhofer ISE says it also determined the potential cost of ownership for the TPedge modules.

“The results show that the specific module costs of the TPedge concept are approximately 2 percent less than the conventional glass-foil-laminate concept,” states Mittag. “The cost reduction is mostly due to lower material costs. Material costs are crucial since they are responsible for appximately 90 percent of the total module production costs, including cells.” The TPedge concept also lowers material costs compared to the glass-glass-laminate concept, according to Fraunhofer ISE.

The TPedge project started at the beginning of 2013 and was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi). Fraunhofer ISE and  Bystronic glass developed the TPedge module technology, and the possibilities for industrial production followed. Fraunhofer ISE has installed 70 TPedge modules on the façade of one of its lab buildings; these have been operating in a field test for three years now. Fraunhofer ISE says further research explores promising approaches to increase the module power and addresses the particular suitability of this technology for building-integrated photovoltaics. An industrial implementation of this technology is a future aim and partners are being sought.

Photo courtesy of Fraunhofer ISE: A TPedge module with 2-mm-thick glass undergoing a distributed load test.


Please enter your comment!
Please enter your name here